Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.864
1.
PLoS One ; 19(5): e0302828, 2024.
Article En | MEDLINE | ID: mdl-38722930

Cupping therapy is a popular intervention for improving muscle recovery after exercise although clinical evidence is weak. Previous studies demonstrated that cupping therapy may improve microcirculation of the soft tissue to accelerate tissue healing. However, it is unclear whether the cupping size could affect the spatial hemodynamic response of the treated muscle. The objective of this study was to use 8-channel near-infrared spectroscopy to assess this clinical question by assessing the effect of 3 cupping sizes (35, 40, and 45 mm in inner diameter of the circular cup) under -300 mmHg for 5 min on the muscle hemodynamic response from the area inside and outside the cup, including oxyhemoglobin and deoxy-hemoglobin in 18 healthy adults. Two-way factorial design was used to assess the interaction between the cupping size (35, 40, and 45 mm) and the location (inside and outside the cup) and the main effects of the cupping size and the location. The two-way repeated measures ANOVA demonstrated an interaction between the cupping size and the location in deoxy-hemoglobin (P = 0.039) but no interaction in oxyhemoglobin (P = 0.100), and a main effect of the cup size (P = 0.001) and location (P = 0.023) factors in oxyhemoglobin. For the cupping size factor, the 45-mm cup resulted in a significant increase in oxyhemoglobin (5.738±0.760 µM) compared to the 40-mm (2.095±0.312 µM, P<0.001) and 35-mm (3.134±0.515 µM, P<0.01) cup. Our findings demonstrate that the cupping size and location factors affect the muscle hemodynamic response, and the use of multi-channel near-infrared spectroscopy may help understand benefits of cupping therapy on managing musculoskeletal impairment.


Hemodynamics , Muscle, Skeletal , Oxyhemoglobins , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Hemodynamics/physiology , Female , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis , Cupping Therapy/methods , Young Adult , Hemoglobins/metabolism
2.
J Med Invest ; 71(1.2): 92-101, 2024.
Article En | MEDLINE | ID: mdl-38735731

This study aimed to investigate blood flow dynamics in the bilateral prefrontal cortex during silent and oral reading using near-infrared spectroscopy (NIRS). The subjects were 40 right-handed university students (20.5±1.8 years old, 20 men and 20 women). After completing the NIRS measurements, the subjects were asked to rate their level of proficiency in silent and oral reading, using a 5-point Likert scale. During oral reading, the left lateral prefrontal cortex (Broca's area) was significantly more active than the right side. During silent reading, prefrontal cortex activity was lower than that during oral reading, and there was no significant difference between both sides of the brain. A significant negative correlation was found between the change in oxy-hemoglobin (oxy-Hb) concentration in the left and right lateral prefrontal cortex during silent reading and silent reading speed. In addition, students with lower self-reported reading proficiency had significantly greater changes in oxy-Hb concentrations in the left and right lateral prefrontal cortex during silent/oral reading than did students with higher self-reported reading proficiency. Reading task assessment using NIRS may be useful for identifying language lateralization and Broca's area. The results demonstrate that NIRS is useful for assessing effortful reading and may be used to diagnose developmental dyslexia in children. J. Med. Invest. 71 : 92-101, February, 2024.


Prefrontal Cortex , Reading , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/blood supply , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Male , Female , Young Adult , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Cerebrovascular Circulation/physiology , Adult
3.
Sci Rep ; 14(1): 10242, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702415

Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.


Electroencephalography , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Male , Adult , Female , Spectroscopy, Near-Infrared/methods , Low-Level Light Therapy/methods , Young Adult , Rest/physiology , Oxyhemoglobins/metabolism , Electron Transport Complex IV/metabolism , Hemodynamics/physiology , Nerve Net/physiology , Nerve Net/metabolism
4.
J Affect Disord ; 356: 88-96, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38588729

OBJECTIVE: Subthreshold depression is an essential precursor and risk factor for major depressive disorder, and its accurate identification and timely intervention are important for reducing the prevalence of major depressive disorder. Therefore, we used functional near-infrared spectroscopic imaging (fNIRS) to explore the characteristics of the brain neural activity of college students with subthreshold depression in the verbal fluency task. METHODS: A total of 72 subthreshold depressed college students (SDs) and 67 healthy college students (HCs) were recruited, and all subjects were subjected to a verbal fluency task (VFT) while a 53-channel fNIRS device was used to collect the subjects' cerebral blood oxygenation signals. RESULTS: The results of the independent samples t-test showed that the mean oxyhemoglobin in the right dorsolateral prefrontal (ch34, ch42, ch45) and Broca's area (ch51, ch53) of SDs was lower than that of HCs. The peak oxygenated hemoglobin of SDs was lower in the right dorsolateral prefrontal (ch34) and Broca's area (ch51, ch53).The brain functional connectivity strength was lower than that of HCs. Correlation analysis showed that the left DLPFC and Broca's area were significantly negatively correlated with the depression level. CONCLUSION: SDs showed abnormally low, inadequate levels of brain activation and weak frontotemporal brain functional connectivity. The right DLPFC has a higher sensitivity for the differentiation of depressive symptoms and is suitable as a biomarker for the presence of depressive symptoms. Dysfunction in Broca's area can be used both as a marker of depressive symptoms and as a biomarker, indicating the severity of depressive symptoms.


Depression , Oxyhemoglobins , Spectroscopy, Near-Infrared , Humans , Oxyhemoglobins/metabolism , Male , Female , Young Adult , Adult , Depression/physiopathology , Depression/metabolism , Broca Area/physiopathology , Dorsolateral Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/diagnostic imaging
5.
Sensors (Basel) ; 24(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38676247

Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.


Hemoglobins , Oxygen , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Adult , Reproducibility of Results , Oxygen/metabolism , Oxygen/analysis , Hemoglobins/analysis , Hemoglobins/metabolism , Oxygen Saturation/physiology , Young Adult , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis
6.
Mol Genet Genomics ; 299(1): 45, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38635011

Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.


MicroRNAs , Otx Transcription Factors , Subarachnoid Hemorrhage , Animals , Rats , Homeodomain Proteins , MicroRNAs/genetics , NF-E2-Related Factor 2 , Oxyhemoglobins , Otx Transcription Factors/genetics
7.
Sci Rep ; 14(1): 8093, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582769

This study investigated brain responses during cybersickness in healthy adults using functional near-infrared spectroscopy (fNIRS). Thirty participants wore a head-mounted display and observed a virtual roller coaster scene that induced cybersickness. Cortical activation during the virtual roller coaster task was measured using fNIRS. Cybersickness symptoms were evaluated using a Simulator Sickness Questionnaire (SSQ) administered after the virtual rollercoaster. Pearson correlations were performed for cybersickness symptoms and the beta coefficients of hemodynamic responses. The group analysis of oxyhemoglobin (HbO) and total hemoglobin (HbT) levels revealed deactivation in the bilateral angular gyrus during cybersickness. In the Pearson correlation analyses, the HbO and HbT beta coefficients in the bilateral angular gyrus had a significant positive correlation with the total SSQ and disorientation. These results indicated that the angular gyrus was associated with cybersickness. These findings suggest that the hemodynamic response in the angular gyrus could be a biomarker for evaluating cybersickness symptoms.


Motion Sickness , Adult , Humans , User-Computer Interface , Hemodynamics/physiology , Oxyhemoglobins , Brain
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124298, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38642522

Acute mesenteric ischemia (AMI) is a clinically significant vascular and gastrointestinal condition, which is closely related to the blood supply of the small intestine. Unfortunately, it is still challenging to properly discriminate small intestinal tissues with different degrees of ischemia. In this study, hyperspectral imaging (HSI) was used to construct pseudo-color images of oxygen saturation about small intestinal tissues and to discriminate different degrees of ischemia. First, several small intestine tissue models of New Zealand white rabbits were prepared and collected their hyperspectral data. Then, a set of isosbestic points were used to linearly transform the measurement data twice to match the reference spectra of oxyhemoglobin and deoxyhemoglobin, respectively. The oxygen saturation was measured at the characteristic peak band of oxyhemoglobin (560 nm). Ultimately, using the oxygenated hemoglobin reflectance spectrum as the benchmark, we obtained the relative amount of median oxygen saturation in normal tissues was 70.0 %, the IQR was 10.1 %, the relative amount of median oxygen saturation in ischemic tissues was 49.6 %, and the IQR was 14.6 %. The results demonstrate that HSI combined with the oxygen saturation computation method can efficiently differentiate between normal and ischemic regions of the small intestinal tissues. This technique provides a powerful support for internist to discriminate small bowel tissues with different degrees of ischemia, and also provides a new way of thinking for the diagnosis of AMI.


Hyperspectral Imaging , Intestine, Small , Necrosis , Oxygen Saturation , Oxygen , Animals , Rabbits , Intestine, Small/blood supply , Intestine, Small/metabolism , Intestine, Small/pathology , Oxygen/blood , Oxygen/metabolism , Hyperspectral Imaging/methods , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Hemoglobins/analysis
9.
Eur J Med Res ; 29(1): 193, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528571

BACKGROUND: Hyperspectral techniques have aroused great interest in non-invasively measuring periodontal tissue hemodynamics. However, current studies mainly focused on three typical inflammation stages (healthy, gingivitis and periodontitis) and practical approaches for using optical spectroscopy for early and precisely detection of periodontal inflammation at finer disease stages have not been well studied. METHODS: This study provided novel spectroscopic insights into periodontitis at different stages of disease, and developed six simple but physically meaning hemodynamic spectral indices (HSIs) including four spectral absorption depths of oxyhemoglobin ( D HbO 2 ), deoxyhemoglobin ( D Hb ), total hemoglobin ( t Hb ) and tissue water ( D water ), and two normalized difference indices of oxyhemoglobin( N D HbO 2 I ) and deoxyhemoglobin ( N D Hb I ) from continuum-removal spectra (400-1700 nm) of periodontal tissue collected from 47 systemically healthy subjects over different severities from healthy, gingivitis, slight, moderate to severe periodontitis for early and precision diagnostics of periodontitis. Typical statistical analyses were conducted to explore the effectiveness of the proposed HSIs. RESULTS: D Hb and t Hb exerted significant increasing trends as inflammation progressed, whereas D HbO 2 exhibited significant difference (P < 0.05) from the healthy sites only at moderate and severe periodontitis and D water presented unstable sensitives to disease severity. By contrast, N D HbO 2 I and N D Hb I showed more steadily downward trends as severity increased, and demonstrated the highest correlations with clinical gold standard parameters. Particularly, the proposed normalized HSIs ( N D HbO 2 I and N D Hb I ) yielded high correlations of - 0.49 and - 0.44 with probing depth, respectively, far outperforming results achieved by previous studies. The performances of the HSIs were also confirmed using the periodontal therapy group. CONCLUSIONS: These results indicated great potentials of combination optical spectroscopy and smart devices to non-invasively probe periodontitis at earlier stages using the simple and practical HSIs. Trial registration This study was retrospectively registered in the Chinese Clinical Trial Registry on October 24, 2021, and the clinical registration number is ChiCTR2100052306.


Gingivitis , Periodontitis , Humans , Oxyhemoglobins/analysis , Periodontitis/diagnosis , Gingivitis/diagnosis , Inflammation/diagnosis , Water , Hemodynamics
10.
Br J Anaesth ; 132(5): 957-963, 2024 May.
Article En | MEDLINE | ID: mdl-38443287

BACKGROUND: Pulse oximetry uses noninvasive optical measurements of light transmission from each of two sources through vascularised living tissue over the cardiac cycle (SpO2). From those measurements, the relative amount of oxygenated haemoglobin (SaO2) in circulating blood can be deduced. Recent reports have shown that, compared with SaO2 measurements from blood samples, SpO2 measurements are biased erroneously high for patients with dark skin. METHODS: We developed a new method, spectrally resolved photoplethysmography (srPPG), to examine how spectral bandwidth affects the transmission of polychromatic light through the fingertip across the cardiac cycle. We measured and recorded the spectral transmission through the fingertip as the O2 concentration in inspired air was reduced. We applied digital spectral filters of two different bandwidths, narrow or broad, to the same srPPG recordings to determine whether SpO2 readings systematically varied for the two bandwidths. The srPPG method also allowed us to measure the fractional amount of melanin in the optical path. The effect of melanin content on the ratio of SpO2 readings for narrow and broad spectral bandwidths was analysed. RESULTS: We hypothesised, based upon the Beer-Lambert law, and then showed experimentally, that the light emission spectra of light-emitting diode light sources, as used in commercial pulse oximeters, result in erroneously high SpO2 measurements for patients having greater melanin concentrations in their skin than those of the subject pool used for instrument calibration. CONCLUSIONS: To eliminate melanin bias, pulse oximeters should use much narrower spectral bandwidths than those used in current models.


Melanins , Oximetry , Humans , Oxygen , Oxyhemoglobins , Calibration
11.
J Phys Chem B ; 128(12): 2853-2863, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38488160

The objective of our work is to investigate the impact of pH on the structural changes of hemoglobin that affect its O2 affinity, known as the Bohr effect. We conducted molecular dynamics (MD) simulations to explore the transition between various hemoglobin states based on the protonation states (PSs) of two histidine residues (ßHis143 and ßHis146). We conducted the MD simulations from the R and R2 states with three sets of PSs assuming pH values of 7.0, 6.5, and 5.5, aiming to investigate the influence of pH on hemoglobin behavior. Our results demonstrated that the protonated His residues promote the state transition from the R state to the R2 state and encourage elongation of the distance between the ß1-ß2 subunits by weakening the inter-subunit interactions in the R state. These observations, aligning with the experimental evidence, indicate that the R2 state typically crystallizes under low pH conditions. Our findings suggest that the relationship between the PSs and the structural stability of the R state plays a role in the acid and alkaline Bohr effect.


Hemoglobins , Histidine , Histidine/chemistry , Hemoglobins/chemistry , Oxyhemoglobins , Hydrogen-Ion Concentration
12.
Wiad Lek ; 77(1): 9-16, 2024.
Article En | MEDLINE | ID: mdl-38431801

OBJECTIVE: Aim: To study the process of hemoglobin oxidation and the enzymatic reactions associated with it. PATIENTS AND METHODS: Materials and Methods: Heparinized human blood (15 IU/ml) was obtained from the clinical department. The concentration of oxy- and methemoglobin, auto-oxidation of hemoglobin was determined spectrophotometrically spectrophotometrically. Autooxidation of hemoglobin was recorded spectrophotometrically, and protein concentration was determined by the Lowry method. Monooxygenase activity of hemoglobin was also measured by the method described by Lowry spectrophotometrically. The concentration of O2 and H2O2 in the reaction media was determined on a biomicroanalyzer OR 210/3 (Redelkis). RESULTS: Results: The obtained experimental data allow us to propose a mechanism of "spontaneous autooxidation" of oxyhemoglobin, which can be described by the following equations: Hb2+O2 → Hb3+ + O2 - (1) Hb2+O2 + 2e - + 2H+ →Hb3+ + H2O2 (2) Hb2+O2 + 2e - + 2H+ →Hb2+ + H2O2 (3) Hb2+ + O2 →Hb2+O2 (4) Spectral characteristics of the process of "spontaneous auto-oxidation" indicate the formation of a metform of hemoglobin, the depletion of oxygen by the system was established, at pH 5.6, an increase in the monooxygenase activity of hemoglobin is observed 3-4 times compared to the physiological level. CONCLUSION: Сonclusions: In addition to the main, previously known functions of hemoglobin (gas transport, peroxidase, monooxygenase), it catalyzes a two-electron oxidase reaction in which O2 is reduced to H2O2. This is confirmed by experimental data on the formation of one of the products of "spontaneous autoxidation" of oxyhemoglobin _ deoxyform at pH 5.6 _ 8.9.


Hydrogen Peroxide , Oxyhemoglobins , Humans , Oxyhemoglobins/metabolism , Hydrogen Peroxide/metabolism , Hemoglobins/metabolism , Erythrocytes/metabolism , Mixed Function Oxygenases/metabolism
13.
J Neural Eng ; 21(2)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38537268

Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.


Calcium , Visual Cortex , Mice , Animals , Photic Stimulation , Oxyhemoglobins , Neurons/physiology , Electric Stimulation/methods
14.
J Biomed Opt ; 29(3): 035002, 2024 Mar.
Article En | MEDLINE | ID: mdl-38532926

Significance: Mechanical ventilation (MV) is a cornerstone technology in the intensive care unit as it assists with the delivery of oxygen in critically ill patients. The process of weaning patients from MV can be long and arduous and can lead to serious complications for many patients. Despite the known importance of inspiratory muscle function in the success of weaning, current clinical standards do not include direct monitoring of these muscles. Aim: The goal of this project was to develop and validate a combined frequency domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) system for the noninvasive characterization of inspiratory muscle response to a load. Approach: The system was fabricated by combining a custom digital FD-NIRS and DCS system. It was validated via liquid phantom titrations and a healthy volunteer study. The sternocleidomastoid (SCM), an accessory muscle of inspiration, was monitored during a short loading period in fourteen young, healthy volunteers. Volunteers performed two different respiratory exercises, a moderate load and a high load, which consisted of a one-minute baseline, a one-minute load, and a six-minute recovery period. Results: The system has low crosstalk between absorption, reduced scattering, and flow when tested in a set of liquid titrations. Faster dynamics were observed for changes in blood flow index (BFi), and metabolic rate of oxygen (MRO2) compared with hemoglobin + myoglobin (Hb+Mb) based parameters after the onset of loads in males. Additionally, larger percent changes in BFi, and MRO2 were observed compared with Hb+Mb parameters in both males and females. There were also sex differences in baseline values of oxygenated Hb+Mb, total Hb+Mb, and tissue saturation. Conclusions: The dynamic characteristics of Hb+Mb concentration and blood flow were distinct during loading of the SCM, suggesting that the combination of FD-NIRS and DCS may provide a more complete picture of inspiratory muscle dynamics.


Oxygen , Spectroscopy, Near-Infrared , Humans , Male , Female , Spectroscopy, Near-Infrared/methods , Hemoglobins/analysis , Oxyhemoglobins/metabolism , Oxygen Consumption/physiology , Muscles/chemistry , Muscle, Skeletal/physiology
15.
PLoS One ; 19(2): e0297486, 2024.
Article En | MEDLINE | ID: mdl-38394255

INTRODUCTION: Moderate hypoxia may impact cognitive and sensorimotor performance prior to self-recognized impairments. Therefore, rapid and objective assessment tools to identify people at risk of impaired function during moderate hypoxia is needed. PURPOSE: Test the hypothesis that reductions in arterial oxygen saturation during moderate normobaric hypoxia (FiO2 = 14%) decreases gamified sensorimotor performance as measured by alterations of motor acuity. METHODS: Following three consecutive days of practice, thirty healthy adults (25 ± 5 y, 10 females) completed three bouts of the tablet-based gamified assessment (Statespace Labs, Inc.) of motor acuity at Baseline and 60 and 90 min after exposure to 13.8 ± 0.2% (hypoxia) and 20.1 ± 0.4% (normoxia) oxygen. The gamified assessment involved moving the tablet to aim and shoot at targets. Both conditions were completed on the same day and were administered in a single-blind, block randomized manner. Performance metrics included shot time and shot variability. Arterial oxyhemoglobin saturation estimated via forehead pulse oximetry (SpO2). Data were analyzed using linear mixed effects models. RESULTS: Compared to normoxia (99±1%), SpO2 was lower (p<0.001) at 60 (89±3%) and 90 (90±2%) min of hypoxia. Shot time was unaffected by decreases in SpO2 (0.012, p = 0.19). Nor was shot time affected by the interaction between SpO2 decrease and baseline performance (0.006, p = 0.46). Shot variability was greater (i.e., less precision, worse performance) with decreases in SpO2 (0.023, p = 0.02) and depended on the interaction between SpO2 decrease and baseline performance (0.029, p< 0.01). CONCLUSION: Decreases in SpO2 during moderate hypoxic exposure hinders sensorimotor performance via decreased motor acuity, i.e., greater variability (less precision) with no change in speed with differing decreases in SpO2. Thus, personnel who are exposed to moderate hypoxia and have greater decreases in SpO2 exhibit lower motor acuity, i.e., less precise movements even though decision time and movement speed are unaffected.


Hypoxia , Oxygen , Adult , Female , Humans , Single-Blind Method , Oximetry , Oxyhemoglobins
16.
Int Wound J ; 21(3): e14814, 2024 Mar.
Article En | MEDLINE | ID: mdl-38415898

Our objective was to evaluate normative data for near-infrared spectroscopy (NIRS) in 110 healthy volunteers by Fitzpatrick skin type (FST) and region of the foot. We obtained measurements of the dorsum and plantar foot using a commercially available device (SnapshotNIR, Kent Imaging, Calgary Canada). On the dorsum of the foot, people with FST6 had significantly lower oxygen saturation compared to FST1-5 (p < 0.001), lower oxyhaemoglobin compared to FST2-5 (p = 0.001), but there was no difference in deoxyhaemoglobin. No differences were found on the plantar foot. When comparing dorsal and plantar foot, there was higher oxyhaemoglobin (0.40 ± 0.09 vs. 0.51 ± 0.12, p < 0.001) and deoxyhaemoglobin (0.16 ± 0.05 vs. 0.21 ± 0.05, p < 0.001) on the plantar foot, but no differences in oxygen saturation (dorsal 70.7 ± 10.8, plantar 70.0 ± 9.5, p = 0.414). In 6.4% of feet, there were black areas, for which no NIRS measurements could be generated. All areas with no data were on the dorsal foot and only found in FST 5-6. People with FST6 had significantly larger areas with no data compared to FST 5 (22.2 cm2 ± 20.4 vs. 1.9 cm2 ± 0.90, p = 0.007). These findings should be considered when using NIRS technology. Skin pigmentation should be evaluated in future NIRS studies.


Oxygen Saturation , Spectroscopy, Near-Infrared , Humans , Healthy Volunteers , Oxyhemoglobins , Foot
17.
Int J Sports Physiol Perform ; 19(4): 347-355, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38215734

PURPOSE: An inspiratory muscle warm-up (IMW) improves inspiratory muscle function, but the effects of high-intensity exercise are inconsistent. We aimed to determine the effects of high-intensity IMW on high-intensity exercise performance and muscle oxygenation. METHODS: Ten healthy men (maximal oxygen uptake [V˙O2max] 52.2 [5.0] mL·kg-1·min-1) performed constant-load exercise to exhaustion on a cycle ergometer at V˙O2max under 2 IMW conditions: a placebo condition (PLA) and a high-intensity IMW condition (HIGH). The inspiratory loads were set at 15% and 80% of maximal inspiratory pressure, respectively. Maximal inspiratory pressure was measured before and after IMW. Oxyhemoglobin was measured in the vastus lateralis by near-infrared spectroscopy during exercise. Rating of perceived exertion (RPE) for a leg was measured after 1 and 2 minutes of exercise. RESULTS: Exercise tolerance was significantly higher under HIGH than PLA (228 [49] s vs 218 [49] s, P = .003). Maximal inspiratory pressure was significantly increased by IMW under HIGH (from 125 [20] to 136 [25] cm H2O, P = .031). Oxyhemoglobin was significantly higher under HIGH than PLA at 80% of the total duration of exercise (P = .048). RPE for the leg was significantly lower under HIGH than PLA after 2 minutes of exercise (P = .019). CONCLUSIONS: Given that oxyhemoglobin is an index of local oxygen supply, the results of this study suggest that high-intensity IMW increases the oxygen supply to active limbs. It may also reflect a reduction in RPE in the leg. In addition, high-intensity IMW may improve exercise performance.


Oxyhemoglobins , Respiratory Muscles , Male , Humans , Respiratory Muscles/physiology , Exercise Tolerance/physiology , Oxygen , Polyesters , Oxygen Consumption/physiology
18.
Geroscience ; 46(3): 3169-3184, 2024 Jun.
Article En | MEDLINE | ID: mdl-38221528

The peak prevalence of multiple sclerosis has shifted into older age groups, but co-occurring and possibly synergistic motoric and cognitive declines in this patient population are poorly understood. Dual-task-walking performance, subserved by the prefrontal cortex, and compromised in multiple sclerosis and aging, predicts health outcomes. Whether acute practice can improve dual-task walking performance and prefrontal cortex hemodynamic response efficiency in multiple sclerosis has not been reported. To address this gap in the literature, the current study examined task- and practice-related effects on dual-task-walking and associated brain activation in older adults with multiple sclerosis and controls. Multiple sclerosis (n = 94, mean age = 64.76 ± 4.19 years) and control (n = 104, mean age = 68.18 ± 7.01 years) participants were tested under three experimental conditions (dual-task-walk, single-task-walk, and single-task-alpha) administered over three repeated counterbalanced trials. Functional near-infrared-spectroscopy was used to evaluate task- and practice-related changes in prefrontal cortex oxygenated hemoglobin. Gait and cognitive performances declined, and prefrontal cortex oxygenated hemoglobin was higher in dual compared to both single task conditions in both groups. Gait and cognitive performances improved over trials in both groups. There were greater declines over trials in oxygenated hemoglobin in dual-task-walk compared to single-task-walk in both groups. Among controls, but not multiple sclerosis participants, declines over trials in oxygenated hemoglobin were greater in dual-task-walk compared to single-task-alpha. Dual-task walking and associated prefrontal cortex activation efficiency improved during a single session, but improvement in neural resource utilization, although significant, was attenuated in multiple sclerosis participants. These findings suggest encouraging brain adaptability in aging and neurological disease.


Multiple Sclerosis , Walking , Humans , Aged , Walking/physiology , Prefrontal Cortex/metabolism , Aging/physiology , Oxyhemoglobins/metabolism
19.
Ear Hear ; 45(3): 742-752, 2024.
Article En | MEDLINE | ID: mdl-38268081

OBJECTIVES: Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN: We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS: Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS: Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.


Auditory Cortex , Speech Perception , Aged , Middle Aged , Young Adult , Humans , Auditory Cortex/physiology , Speech Perception/physiology , Oxyhemoglobins , Spectroscopy, Near-Infrared , Noise , Auditory Perception , Acoustic Stimulation
20.
Sensors (Basel) ; 24(2)2024 Jan 11.
Article En | MEDLINE | ID: mdl-38257551

Assessing pain in non-verbal patients is challenging, often depending on clinical judgment which can be unreliable due to fluctuations in vital signs caused by underlying medical conditions. To date, there is a notable absence of objective diagnostic tests to aid healthcare practitioners in pain assessment, especially affecting critically-ill or advanced dementia patients. Neurophysiological information, i.e., functional near-infrared spectroscopy (fNIRS) or electroencephalogram (EEG), unveils the brain's active regions and patterns, revealing the neural mechanisms behind the experience and processing of pain. This study focuses on assessing pain via the analysis of fNIRS signals combined with machine learning, utilising multiple fNIRS measures including oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB). Initially, a channel selection process filters out highly contaminated channels with high-frequency and high-amplitude artifacts from the 24-channel fNIRS data. The remaining channels are then preprocessed by applying a low-pass filter and common average referencing to remove cardio-respiratory artifacts and common gain noise, respectively. Subsequently, the preprocessed channels are averaged to create a single time series vector for both ΔHBO2 and ΔHHB measures. From each measure, ten statistical features are extracted and fusion occurs at the feature level, resulting in a fused feature vector. The most relevant features, selected using the Minimum Redundancy Maximum Relevance method, are passed to a Support Vector Machines classifier. Using leave-one-subject-out cross validation, the system achieved an accuracy of 68.51%±9.02% in a multi-class task (No Pain, Low Pain, and High Pain) using a fusion of ΔHBO2 and ΔHHB. These two measures collectively demonstrated superior performance compared to when they were used independently. This study contributes to the pursuit of an objective pain assessment and proposes a potential biomarker for human pain using fNIRS.


Pain Measurement , Pain , Humans , Oxyhemoglobins , Pain/diagnosis , Pain Measurement/methods , Spectroscopy, Near-Infrared
...